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Abstract

The consistent finite element formulation of the vibration problem generates upper bounds on the
corresponding exact eigenvalues but requires the solution of the highly expensive general algebraic
eigenproblem Kx ¼ lMx with a global matrix M that is of the same sparsity pattern as the global stiffness
K. The lumped, diagonal, mass matrix finite element formulation is no longer variationally correct but
results in a simplified algebraic eigenproblem of comparable accuracy. We may write the mass matrix as a
linear matrix function, MðgÞ ¼ M1 þ gM2, of parameter g such that Mðg ¼ 1Þ is the (diagonal) lumped
mass matrix and Mðg ¼ 0Þ is the consistent mass matrix. It has been shown that an optimal g exists between
these two states which results in superaccurate eigenvalues. What detracts from the appeal of this approach
is that the superior accuracy thus achieved comes at the hefty price of having to solve the still general
algebraic eigenproblem with a nondiagonal mass matrix. In this note we show that the same superior
accuracy can be had by first computing an eigenvector u from Ku ¼ lDu, in which D ¼ M1 þ M2 is the
lumped, diagonal, mass matrix, and then obtaining the corresponding, superaccurate, eigenvalue from the
Rayleigh quotient R½u� ¼ uTKu=uTMðgÞu, MðgÞ ¼ M1 þ gM2 for an optimal g.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In a recent note [1] we suggested (see also Refs. [2,3]) to write the finite element mass matrix as a
linear function, MðgÞ ¼ M1 þ gM2, of parameter g, such that Mðg ¼ 1Þ is the (diagonal) lumped
see front matter r 2005 Elsevier Ltd. All rights reserved.
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mass matrix and Mðg ¼ 0Þ is the consistent mass matrix, and adjust g to achieve super-
convergence. What detracts from the appeal of this approach is that the superior accuracy thus
achieved comes at the hefty price of having to solve the general algebraic eigenproblem Ku ¼ lMu
with a mass matrix M that is not diagonal. The purpose of this note is to show that the same
superior accuracy can be had by first computing an eigenvector u from Ku ¼ lDu, in which
D ¼ M1 þ M2 is the lumped diagonal matrix, and then obtaining the corresponding, super-
accurate, eigenvalue from the Rayleigh quotient

R½u� ¼
uTKu

uTMðgÞu
; MðgÞ ¼ M1 þ gM2 (1)

for an optimal g.
2. Two-nodes string element

As before we start with looking at the simplest, most accessible to analysis, model problem of
the vibrating unit string, described by the boundary value problem

u00 þ lu ¼ 0; 0oxo1; uð0Þ ¼ uð1Þ ¼ 0 (2)

for which l ¼ p2 is the lowest eigenvalue, and u ¼ uðxÞ ¼ sin px the corresponding eigenfunction.
The linear element matrices for the string problem are

k ¼
1

h

1 �1

�1 1

� �
; mðgÞ ¼

h

6

2 1

1 2

� �
þ g

1 �1

�1 1

� �� �
(3)

with k being the element stiffness matrix, and with mðgÞ being the element mass matrix such that

mð0Þ ¼
h

6

2 1

1 2

� �
and mð1Þ ¼

h

2

1 0

0 1

� �
(4)

are the consistent and the lumped element mass matrices, respectively.
Let the interval 0pxp1 be divided into n þ 1 sections of size h ¼ 1=ðn þ 1Þ with nodes labeled

0; 1; 2; . . . ; n; n þ 1. Assembly of the linear finite elements over this mesh leads to the typical finite
difference equation

uj � 2ujþ1 þ ujþ2 þ
lh2

6
ðð1� gÞuj þ ð4þ 2gÞujþ1 þ ð1� gÞujþ2Þ ¼ 0; j ¼ 0; 1; . . . ; n; n þ 1. (5)

The characteristic equation of finite differences scheme (5) is

z2 þ 2z
�1þ 1

6
ð2þ gÞlh2

1þ 1
6
ð1� gÞlh2

þ 1 ¼ 0, (6)

so that for the fundamental mode and the lowest eigenvalue

cos ph ¼
2� 1

6
ð4þ 2gÞlh2

2þ 1
6
ð2� 2gÞlh2

(7)
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and consequently

l ¼
6

1� g
1

h2
1� cos ph

bþ cos ph
; b ¼

2þ g
1� g

; ga1. (8)

Power series expansion produces

l ¼ p2½1þ ð1� 2gÞp2h2
� þ Oðh4

Þ (9)

and the choice g ¼ 1
2
results in

l ¼ p2 1�
p4h4

240

� �
þ Oðh6

Þ (10)

with a superior asymptotic accuracy Oðh4
Þ.
3. A Rayleigh quotient correction

For the lumped matrix formulation ðg ¼ 1Þ we obtain from Eq. (5) and the end conditions
uð0Þ ¼ uð1Þ ¼ 0 the first eigenvector

uj ¼ sin ph
j

n þ 1

� �
; j ¼ 0; 1; . . . ; n; n þ 1 (11)

which we observe to be the interpolant to the first eigenfunction uðxÞ ¼ sin px; 0pxp1. From
Eq. (7) we obtain, with g ¼ 1, the corresponding lowest eigenvalue

l ¼
1

h2
ð1� cos phÞ ¼ p2ð1� 1

12
x2 þ 1

360
x4 þ 	 	 	Þ; x ¼ ph. (12)

We now propose to use eigenvector u of Eq. (11) to compute a new approximation to l using
the Rayleigh quotient

R½u� ¼
uTKu

uTMðgÞu
¼

uTKu

uTM1u þ guTM2u
. (13)

At this point we prefer to make the substitution g ¼ 1� d so as to have

R½u� ¼
uTKu

uTMLu � duTMKu
, (14)

where ML is the lumped mass matrix, and

MK ¼
h2

6
K , (15)

K being the global stiffness matrix. Hence

R½u� ¼
uTKu=uTMLu

1� ðdh2=6ÞðuTKu=uTMLuÞ
¼

l

1� ðdh2=6Þl
, (16)

where l ¼ uTKu=uTMLu is the lowest eigenvalue computed with the lumped mass matrix ML.
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Substituting l from Eq. (12) into Eq. (14) we obtain

R½u� ¼ p2
1� 1

12
x2 þ 1

360
x4 � 	 	 	

1� ðd=6Þðx2 � 1
12

x4 þ 	 	 	Þ
; x ¼ ph (17)

indicating that for highest accuracy d ¼ g ¼ 1
2
. For this choice of g

R½u� ¼ p2
1� 1

12
x2 þ 1

360
x4 � 	 	 	

1� 1
12

x2 þ 1
144

x4 þ 	 	 	
¼ p2ð1� 1

240
x4Þ þ Oðx6Þ; x ¼ ph (18)

which is exactly the result we directly obtain for g ¼ 1
2.

If generally true, then this conclusion is of considerable computational interest. It means that
the Oðh4

Þ superaccuracy in the computed l can be achieved by first computing the eigenvectors for
the lumped finite element version of the mass matrix, then computing eigenvalue l from
Rayleigh’s quotient using the optimal mass matrix. Solving Ku ¼ lu requires a sophisticated
iterative procedure, while the computation of Rayleigh’s quotient does not require more that
matrix vector multiplications that can be performed even without the explicit assembly of the
finite elements global matrices.
4. Quadratic string element

The element stiffness and mass matrices for a three-nodes quadratic string element of size 2h are

k ¼
1

6h

7 �8 1

�8 16 �8

1 �8 7

2
64

3
75 and mðgÞ ¼

h

15

4 2 �1

2 16 2

�1 2 4

2
64

3
75þ g

1 �2 1

�2 4 �2

1 �2 1

2
64

3
75

0
B@

1
CA, (19)

respectively. We write mðgÞ ¼ m1 þ gm2, and obtain

mð0Þ ¼
h

15

4 2 �1

2 16 2

�1 2 4

2
64

3
75 and mð1Þ ¼

h

3

1

4

1

2
64

3
75 (20)

as the consistent and lumped element matrices, respectively.
We observe that

uT
1 �2 1

�2 4 �2

1 �2 1

2
64

3
75u ¼ ðu1 � 2u2 þ u3Þ

2 (21)

for any vector u ¼ ½u1u2u3�
T and we recall the fact that ðu1 � 2u2 þ u3Þ=h2 is a finite difference

formula for the second derivative of the function u ¼ uðxÞ. In particular, if uj ¼ sinðjphÞ, then

ðu0 � 2u1 þ u2Þ=h2 ¼
1

h2
ð0� 2 sin ph þ sin 2phÞ ¼ �p3h (22)

if h51.
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In Ref. [1] it has been shown that for the optimal g ¼ 2
3
the accuracy of the computed l becomes

Oðh6
Þ instead of the Oðh4Þ accuracy of the consistent and lumped finite element matrix

formulations.
For a fixed vector Rayleigh’s quotient is a rational function of g and we propose to explore now

the highest accuracy that can be obtained from this, g dependent, quotient for eigenvector u
computed with the lumped finite element mass matrix formulation.We make the substitution
g ¼ 1� d and have

R½u� ¼
uTKu

uTMLu � duTMKu
, (23)

where ML is the lumped mass matrix, and MK is the global matrix assembled from the m2 part of
the element mass matrix in Eq. (19).
We rewrite R½u� as

R½u� ¼
uTKu=uTMLu

1� dh4
ððuTMKu=uTMLuÞh�4

Þ
¼

l

1� dh4m
, (24)

where l ¼ uTKu=uTMLu is the lowest eigenvalue computed with the lumped mass matrix ML, and
where, ultimately

m ¼ lim
h!0

uTMKu

uTMLu
h�4.

We ascertain numerically that

l ¼ p2 � 10:7h4 and m ¼ 3:25,

so that

R½u� ¼ p2 þ
�10:7þ p23:25d

1� 3:25h4d
h4

þ higher-order terms. (25)

If d ¼ 1
3
, or g ¼ 2

3
, then the Oðh4Þ drops from R½u� and we are left with R½u� ¼ p2 þ Oðh6

Þ.
Interestingly enough, the same g ¼ 2

3
that assures the Oðh6Þ accuracy in the finite element

computation with the modified mass matrix assures the same accuracy from the Rayleigh quotient
correction using the eigenvector computed from the lumped finite element mass matrix
formulation. Fig. 1 depicts the convergence process of l for the finite element consistent, lumped
and optimal mass matrix formulations as well as for the Rayleigh quotient correction.
5. Linear triangular membrane element

From one dimension we pass to two and consider the membrane eigenproblem

q2u

q2x
þ

q2u

q2y
þ lu ¼ 0 in domain D with u ¼ 0 on boundary S. (26)
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Fig. 1. Convergence of the fundamental eigenvalue l of a unit string approximated by quadratic finite elements.
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The finite element membrane matrices for a triangle of sides L1;L2;L3 and area A are

k ¼
1

8A
L2
1

2 �1 �1

�1 0 1

�1 1 0

2
64

3
75þ L2

2

0 �1 1

�1 2 �1

1 �1 0

2
64

3
75þ L2

3

0 1 �1

1 0 �1

�1 �1 2

2
64

3
75

0
B@

1
CA (27)

and

mðgÞ ¼ m1 þ gm2 ¼
A

12

2 1 1

1 2 1

1 1 2

2
64

3
75þ g

2 �1 �1

�1 2 �1

�1 �1 2

2
64

3
75

0
B@

1
CA, (28)

so that mðg ¼ 0Þ is the consistent element mass matrix and mðg ¼ 1Þ is the lumped.
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We observe that

uT

2 �1 �1

�1 2 �1

�1 �1 2

2
64

3
75u ¼ ðu1 � u2Þ

2
þ ðu2 � u3Þ

2
þ ðu3 � u1Þ

2 (29)

for any vector u.
If L1 ¼ L2 ¼ L3 ¼ h, then the area of the equilateral triangle becomes A ¼

ffiffiffi
3

p
h2=4. Writing

g ¼ 1� d the element stiffness and mass matrices become

k ¼
h2

8A

2 �1 �1

�1 2 �1

�1 �1 2

2
64

3
75 and m ¼

A

3

1

1

1

2
64

3
75�

Ad
12

2 �1 �1

�1 2 �1

�1 �1 2

2
64

3
75, (30)

respectively. In view of Eq. (30) the element mass matrix may be written as

m ¼
A

3
I � d

2

3

A2

h2
k, (31)

where k is the element stiffness matrix. We use this element to discretize an equilateral triangular
membrane of unit sides that is known [4] to have a fundamental eigenvalue of
l ¼ 16p2=3 ¼ 52:63789. According to Ref. [1] finite element superconvergence is achieved here
with g ¼ d ¼ 1

2
.

To explore the correction available with the Rayleigh quotient we write it as

R½u� ¼
uTKu=uTMLu

1� ðdh2=8ÞðuTKu=uTMLuÞ
¼

l

1� ðdh2=8Þl
(32)

for the fundamental eigenvector u computed from the finite element lumped matrix formulation.
We numerically ascertain that l ¼ 52:63789� 170:4h2 so that

R½u� ¼ 52:63789
1� 3:24h2

1� 6:58dh2
(33)

with an optimum reached for the same d ¼ g ¼ 1
2
.

Fig. 2 shows the convergence of l for the equilateral fixed membrane of unit sides as the number
of elements per side Nes is increased. Computation is shown for g ¼ 0; 1; 12, and the Rayleigh
correction. And indeed the accuracy of the computed l is of OðNes�2Þ for both g ¼ 0 and 1, but
jumps to OðNes�4Þ with g ¼ 1

2
and the Rayleigh correction.
6. Square membrane

The next membrane element we consider is the four-nodes square of side h, with node 4 being
opposite node 1, and node 3 being opposite node 2. Its element stiffness and mass matrices are
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Fig. 2. Convergence of fundamental eigenvalue l of a unit triangular membrane approximated by first-order elements.
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k ¼
1

6

4 �1 �1 �2

�1 4 �2 �1

�1 �2 4 �1

�2 �1 �1 4

2
6664

3
7775; mðgÞ ¼

h2

36

4 2 2 1

2 4 1 2

2 1 4 2

1 2 2 4

2
6664

3
7775þ g

5 �2 �2 �1

�2 5 �1 �2

�2 �1 5 �2

�1 �2 �2 5

2
6664

3
7775

0
BBB@

1
CCCA, (34)

respectively, with mðg ¼ 0Þ being the consistent element mass matrix and mðg ¼ 1Þ being the
element lumped mass matrix.
We notice that

uT

5 �2 �2 �1

�2 5 �1 �2

�2 �1 5 �2

�1 �2 �2 5

2
666664

3
777775

u ¼ 2ðu2 � u1Þ
2
þ 2ðu4 � u3Þ

2
þ 2ðu3 � u1Þ

2

þ2ðu4 � u2Þ
2
þ ðu3 � u2Þ

2
þ ðu4 � u1Þ

2
ð35Þ

for any vector u.
We use this element to discretize a unit square membrane for which l ¼ 2p2. Setting the

fundamental eigenvector u computed with the lumped mass matrix into Rayleigh’s quotient we
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obtain that

R½u� ¼ 2p2
1� 2:47h2

1� 3:28dh2
þ Oðh4

Þ

� �
(36)

and at best d ¼ 3
4
or g ¼ 1� d ¼ 1

4
, as for the optimal mass matrix.

7. Rectangular membrane

The element stiffness and mass matrices for the rectangular four-nodes membrane finite element
of sides a and b are

k ¼
b

6a

2 �2 1 �1

�2 2 �1 1

1 �1 2 �2

�1 1 �2 2

2
6664

3
7775þ

a

6b

2 1 �2 �1

1 2 �1 �2

�2 �1 2 1

�1 �2 1 2

2
6664

3
7775 (37)

and

mðgÞ ¼
ab

36

4 2 2 1

2 4 1 2

2 1 4 2

1 2 2 4

2
6664

3
7775þ g

5 �2 �2 �1

�2 5 �1 �2

�2 �1 5 �2

�1 �2 �2 5

2
6664

3
7775

0
BBB@

1
CCCA, (38)

respectively.
To observe the influence of the membrane elongation on the optimal g we propose to compute

the fundamental frequency o of a rectangular membrane of sides 1 and 2 fixed at its rim. The
fundamental frequency of the membrane is

o2 ¼ l ¼ p2
1

12
þ

1

22

� �
¼

5

4
p2. (39)

We discretize the membrane by Nes elements per side, each being thus by itself of the aspect ratio 2
1
.

The g computed for this membrane, both for the optimal mass matrix and the best Rayleigh
quotient, turns out to be the same g ¼ 1

4
as for the square membrane.

Fig. 3 shows the error in the computed first eigenvalue of the rectangular fixed membrane
versus the number of elements per side Nes on a logarithmic scale. An identical graph is generated
for the square membrane discretized by square elements.
8. Circular membrane

The circular membrane provides us with the simplest eigenproblem with variable coefficients.
The element stiffness and mass matrices of a linear element located between radii r1 and r2 are

k ¼
r1 þ r2

2h

1 �1

�1 1

� �
(40)
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Fig. 3. Convergence of fundamental eigenvalue l of a rectangular membrane.
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and

mðdÞ ¼
h

4
ðr1 þ r2Þ

1

1

� �
�

h

12
d r1

�1

�1 2

� �
þ r2

2 �1

�1

� �� �
, (41)

respectively, where d ¼ 1� g.
The lowest eigenvalue l of a circular membrane of unit radius is obtained as the first root of

Bessel’s function, J0ð
ffiffiffi
l

p
Þ ¼ 0, and l ¼ 5:783186. By the numerical analysis method of the

previous sections we fix here an optimal d ¼ 0:95 or g ¼ 1� d ¼ 0:05. Fig. 4 shows the
dependence of the relative error in the computed l upon g around the optimal value.
Fig. 5 shows the convergence of the fundamental eigenvalue l with the number of elements Ne

in the discretization.
9. Higher modes

We return to Eq. (1) and the string problem discretized by the two-point linear finite element.
The difference equation plus the end conditions u0 ¼ un�1 ¼ 0 is solved by

uj ¼ sin pkhj; j ¼ 0; 1; 2; . . . ; n þ 1; k ¼ 1; 2; . . . , (42)
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Fig. 4. Accuracy of the computed fundamental eigenvalue of a unit circular membrane versus g.
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where h ¼ 1=ðn þ 1Þ, with which we have

lk ¼
12

h2

1� cos pkh

4þ 2gþ 2ð1� gÞ cos pkh
(43)

as the approximation to the kth eigenvalue. We set d ¼ 1� g; x ¼ pkh, and have by power series
expansion

lk ¼ p2k2
ð1þ 1

12
ð2d� 1Þx2 þ 1

360
ð1� 10dþ 10d2Þx4 þ 	 	 	Þ (44)
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in which, we recall, p2k2 is the exact kth eigenvalue of the unit string. Substituting d ¼ 0; 1 into
Eq. (44) we obtain

lk ¼ p2k2
ð1� 1

12
p2k2h2

þ 	 	 	Þ; lk ¼ p2k2
ð1þ 1

12
p2k2h2 þ 	 	 	Þ, (45)

respectively, while for d ¼ 1
2
we have

lk ¼ p2k2
ð1� 1

240
p4k4h4

þ 	 	 	Þ. (46)

The error in lk computed with d ¼ 0 and 1 is still Oðh2Þ but is now proportional to k2, that is, to
the square of the mode index k. The error in lk computed with the optimal d ¼ 1

2
is still Oðh4

Þ but
is now proportional to k4, that is, to the fourth power of the mode index k.
As the mode index k rises the kth eigenfunction ukðxÞ ¼ sin kpx of the unit string becomes

‘‘wavier’’ in the sense that now

u00kðxÞ ¼ �p2k2 sin kpx ¼ �lk sin kpx ¼ �lkuk; 0pxp1 (47)

and the ability of the linear finite elements to approximate it drops, as detailed in Ref. [5], and
hence the accuracy decline in the computed higher frequencies.
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